Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
EBioMedicine ; 86: 104351, 2022 Nov 11.
Article in English | MEDLINE | ID: covidwho-2104819

ABSTRACT

BACKGROUND: Coronavirus Disease 2019 (COVID-19) can lead to the development of acute respiratory distress syndrome (ARDS). In some patients with non-resolvable (NR) COVID-19, lung injury can progress rapidly to the point that lung transplantation is the only viable option for survival. This fatal progression of lung injury involves a rapid fibroproliferative response and takes on average 15 weeks from initial symptom presentation. Little is known about the mechanisms that lead to this fulminant lung fibrosis (FLF) in NR-COVID-19. METHODS: Using a pre-designed unbiased PCR array for fibrotic markers, we analyzed the fibrotic signature in a subset of NR-COVID-19 lungs. We compared the expression profile against control lungs (donor lungs discarded for transplantation), and explanted tissue from patients with idiopathic pulmonary fibrosis (IPF). Subsequently, RT-qPCR, Western blots and immunohistochemistry were conducted to validate and localize selected pro-fibrotic targets. A total of 23 NR-COVID-19 lungs were used for RT-qPCR validation. FINDINGS: We revealed a unique fibrotic gene signature in NR-COVID-19 that is dominated by a hyper-expression of pro-fibrotic genes, including collagens and periostin. Our results also show a significantly increased expression of Collagen Triple Helix Repeat Containing 1(CTHRC1) which co-localized in areas rich in alpha smooth muscle expression, denoting myofibroblasts. We also show a significant increase in cytokeratin (KRT) 5 and 8 expressing cells adjacent to fibroblastic areas and in areas of apparent epithelial bronchiolization. INTERPRETATION: Our studies may provide insights into potential cellular mechanisms that lead to a fulminant presentation of lung fibrosis in NR-COVID-19. FUNDING: National Institute of Health (NIH) Grants R01HL154720, R01DK122796, R01DK109574, R01HL133900, and Department of Defense (DoD) Grant W81XWH2110032 to H.K.E. NIH Grants: R01HL138510 and R01HL157100, DoD Grant W81XWH-19-1-0007, and American Heart Association Grant: 18IPA34170220 to H.K.-Q. American Heart Association: 19CDA34660279, American Lung Association: CA-622265, Parker B. Francis Fellowship, 1UL1TR003167-01 and The Center for Clinical and Translational Sciences, McGovern Medical School to X.Y.

3.
Int J Mol Sci ; 21(21)2020 Oct 29.
Article in English | MEDLINE | ID: covidwho-902541

ABSTRACT

The 1918 influenza killed approximately 50 million people in a few short years, and now, the world is facing another pandemic. In December 2019, a novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused an international outbreak of a respiratory illness termed coronavirus disease 2019 (COVID-19) and rapidly spread to cause the worst pandemic since 1918. Recent clinical reports highlight an atypical presentation of acute respiratory distress syndrome (ARDS) in COVID-19 patients characterized by severe hypoxemia, an imbalance of the renin-angiotensin system, an increase in thrombogenic processes, and a cytokine release storm. These processes not only exacerbate lung injury but can also promote pulmonary vascular remodeling and vasoconstriction, which are hallmarks of pulmonary hypertension (PH). PH is a complication of ARDS that has received little attention; thus, we hypothesize that PH in COVID-19-induced ARDS represents an important target for disease amelioration. The mechanisms that can promote PH following SARS-CoV-2 infection are described. In this review article, we outline emerging mechanisms of pulmonary vascular dysfunction and outline potential treatment options that have been clinically tested.


Subject(s)
Acute Lung Injury/pathology , Coronavirus Infections/drug therapy , Coronavirus Infections/pathology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/pathology , Severe Acute Respiratory Syndrome/pathology , Vasoconstriction/physiology , Betacoronavirus , COVID-19 , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/pathology , Kallikrein-Kinin System/physiology , Pandemics , Renin-Angiotensin System/physiology , SARS-CoV-2 , Severe Acute Respiratory Syndrome/drug therapy , Vasoconstriction/drug effects
4.
J Cell Physiol ; 236(4): 2950-2958, 2021 04.
Article in English | MEDLINE | ID: covidwho-777471

ABSTRACT

Coronavirus disease-2019 (COVID-19) is a global pandemic and caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has resulted in millions of deaths worldwide. Reports denote SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2), transmembrane serine protease 2 (TMPRSS2) as its primary entry point into the host cell. However, understanding the biology behind this viral replication, disease mechanism and drug discovery efforts are limited due to the lack of a suitable experimental model. Here, we used single-cell RNA sequencing data of human organoids to analyze expressions of ACE2 and TMPRSS2, in addition to an array of RNA receptors to examine their role in SARS-CoV-2 pathogenesis. ACE2 is abundant in all organoids, except the prostate and brain, and TMPRSS2 is omnipresent. Innate immune pathways are upregulated in ACE2(+) cells of all organoids, except the lungs. Besides this, the expression of low-density lipoprotein receptor is highly enriched in ACE2(+) cells in intestinal, lung, and retinal organoids, with the highest expression in lung organoids. Collectively, this study demonstrates that the organoids can be used as an experimental platform to explore this novel virus disease mechanism and for drug development.


Subject(s)
Angiotensin-Converting Enzyme 2/analysis , COVID-19 , Organoids , Sequence Analysis, RNA/methods , Serine Endopeptidases/analysis , Single-Cell Analysis/methods , Humans , Models, Biological , Receptors, Virus/analysis , SARS-CoV-2 , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL